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In recent decades, while great emphasis has been given to the monitoring of point-scale

soil moisture patterns and field-scale integrated soil moisture, the measurement of

matric potential has attracted little attention. Information on the soil matric potential

is available in point-scale measurements but is still missing at field-scale. This state

variable is necessary to understand hydrological fluxes and to determine the soil water

retention function (WRF) for field-scale applications. In this study, we combine data

from cosmic-ray neutron probes (CRNP, non-invasive proximal soil moisture sensors)

and SoilNet wireless sensor networks (invasive ground-based soil moisture and matric

potential sensors) installed in two sub-catchments with contrasting land-use (agroforestry

vs. near-natural forest) to derive a field-scale WRF. We investigate the hypothesis that

both sensor types provide effective measurements that are representative for the entire

sub-catchment, as well as the drawbacks of integrating the different measurement scales

of the sensor types (i.e., spatial-mean of distributed point-scale data vs. an integrated

field-scale measurement). We found discrepancies in the data of the two sensor types

related to the effects of the time-varying vertical measurement footprint of the CRNP,

which induces a scale mismatch between CRNP-based soil moisture (referring mostly to

near-surface depths) and the spatially averaged soil matric potential data measured at

soil depths of 0.15 and 0.30m. To remove the offsets, we opted to use the soil moisture

index (SMI) based on the estimation of field capacity and wilting point, retrieved from the

knowledge of the field-scale WRF. We found that the bimodality of SMI calculated with

SoilNet-based soil moisture induced by Mediterranean rainfall seasonal behavior is not

well-captured by CRNP-based soil moisture, except in a particularly dry year like 2017.

The contrasts in SMI values between the two test sites were associated with differences

in the spatial variability of soil moisture patterns explained by soil texture or terrain

characteristics. We argue that field-scale WRFs are useful for the analysis of hydrological

processes at the sub-catchment (field) scale and the application of distributed models.

Keywords: cosmic-ray neutron probe (CRNP), wireless sensor network (WSN), Mediterranean seasonality,

machine-learning technique, partial-least squares regression (PLSR), water retention function, soil matric

potential
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HIGHLIGHTS

- Coupling two types of sensing systems allows effective
identification of field-scale soil hydrological responses of sites
with different characteristics.

- Our results suggest the presence of a scale mismatch in the
cosmic-ray probe’s vertical footprint.

- Data from CRNP are unable to capture the effects of the
bimodal precipitation regime of the Mediterranean climate.

INTRODUCTION

Soil moisture (θ) is an important state variable in environmental
systems and can be inferred from ground-based devices,
proximal sensors, and remote-sensing platforms enabling
observations to be performed across different spatial and
temporal scales. Satellite systems are non-invasive measurement
methods, with a spatial resolution ranging from about 101 m
(e.g., Sentinel-1) to 103 m (e.g., SMAP, SMOS), which roughly
determine near-surface soil moisture when canopy disturbance
is not significant, but are unable to provide information in the
entire soil rooting zone (Brocca et al., 2017). Direct measurement
based on the thermogravimetric technique (Topp and Ferré,
2002), can operationally provide reliable data in sparse locations
and is commonly used during sporadic field campaigns. This
technique enables the soil water content distribution within the
root zone to be measured occasionally and is destructive, time-
consuming, expensive, and therefore unfeasible for large-scale
applications (Entin et al., 2000; Romano, 2014). Unattended
and automated in-situ monitoring networks for monitoring soil
moisture are designed to overcome most of these drawbacks
and comprise invasive ground-based instrumentation or non-
invasive proximal sensors. The former include point-scale
sensors installed in multiple positions and soil depths, thus
providing localized information about soil moisture dynamics
in a field. The latter consist of stationary “passive” cosmic-
ray neutron probes (CRNPs) that monitor areal soil moisture
over a footprint of hundreds of meters in diameter and of
several decimeters of soil depth (Ochsner et al., 2013; Vereecken
et al., 2015; Babaeian et al., 2019). The issue of coupling root-
zone sensor networks and CRNP-based observations has been
investigated only recently (e.g., Franz et al., 2012; Peterson
et al., 2016; Nguyen et al., 2019). Other proximal sensors
are the thermal or spectral cameras carried by unmanned
aerial systems (UASs), although this relatively recent sensing
technique can provide only sporadic measurements of soil
moisture patterns.

At the field scale, soil moisture strongly depends on the
local dynamics of the hydrological processes and therefore
varies considerably in space and time. Soil moisture is
greatly affected by complex and interwoven time-variant
(e.g., climate, vegetation) and (mostly) time-invariant
(e.g., topography, soil characteristics) factors. Especially in
croplands, a variety of human activities and management
practices induce changes in soil physical and hydraulic
properties that have quite direct repercussions on the
spatial-temporal evolutions of soil moisture (Hébrard

et al., 2006; Price et al., 2010; Jonard et al., 2013). Grayson
et al. (1997) identified the controls exerted by local (such
as soil properties, vegetation, etc.) and non-local (such
as terrain attributes) characteristics on soil moisture
patterns: the former exerts a major influence under drier-
than-normal soil conditions, when vertical water fluxes,
such as evapotranspiration and infiltration, become the
dominating hydrological processes; the latter, instead, is
linked more to lateral fluxes and has a greater influence
when wetter-than-normal conditions establish in the soil
(Orth and Destouni, 2018).

Over the last two decades, monitoring of soil moisture has
entered a stage of unprecedented growth, mainly because it
plays an important role in controlling the exchange of water
and energy between land and atmosphere and partly because
it is increasingly employed to validate distributed hydrological
models of different complexity over different spatial scales (Orth
and Seneviratne, 2015; Nasta et al., 2019). Nevertheless, another
fundamental state variable is the soil matric potential (ψ)
that enables the total potential gradient to be determined, and
hence the water fluxes in the soil domain. Low-cost sensors
provide point-scale measurements of soil matric potential
that can be coupled to sensors that indirectly measure soil
moisture. Data pairs of ψ and θ provide the point-scale water
retention function θ(ψ) (WRF) that is a necessary input soil
characteristic to solve a Richards-based distributed hydrological
model, but also represents valuable information to parameterize
a bucket-type hydrological model. Knowledge of the field-
scale WRF allows the estimation of the soil moisture values
at the conditions of “field capacity” and “permanent wilting.”
These two points are commonly employed for the purpose of
irrigation scheduling.

In an ideal situation, large scale distributed modeling of
hydrological processes should rely on measurements of both
field-scale soil moisture and matric potential values. While field-
scale soil moisture can be provided by non-invasive proximal
sensors (e.g., CRNPs), to our knowledge there is still a lack of
sensing techniques enabling field-scale soil matric potentials to
be monitored.

To offer a step forward, a major goal of this study is to explore
the feasibility of assessing field-scale soil hydrological behavior
of two experimental fields by coupling the measurements
provided by non-invasive and invasive sensors. The area-
average soil moisture monitored by CRNP is integrated with
the spatial-mean of the point-scale soil moisture and soil matric
potential values measured by a network of multiple low-cost
sensors (SoilNet) installed in two sub-catchments of the Alento
observatory with different physiographic characteristics. The
results section is organized into four sub-sections. The first part
concerns the correspondence between the vertical measuring
soil volume of the CRNP (i.e., the CRNP’s support depth)
and the relative positions of the SoilNet sensors below the
soil surface (section Assessing the CRNP Vertical Footprint at
MFC2 and GOR1). The second part of the results is devoted
to identifying the field-scale soil water retention functions
at the two experimental sites (section Field-Scale Soil Water
Retention Characteristics). The paper then proceeds by analyzing
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the temporal variability of CRNP-based and SoilNet-based soil
moisture data by questioning their ability to respond to the
typical rainfall seasonality of the Mediterranean climate (section
Temporal Variability of the Soil Moisture Index). Finally, we
quantify the spatial variability of soil moisture data explained
by more easily retrievable information, such as soil texture and
terrain features (section Spatial Variability of Soil Moisture). To
remove the offset between CRNP-based and SoilNet-based soil
moisture data and the impact of physiographic characteristics
on the soil moisture temporal variability, we employed the
soil moisture index (SMI) that is a transformation of soil
moisture data by referring to the soil moisture values at the
conditions of “field capacity” and “permanent wilting” retrieved
from the field-scale WRF. The obtained results are firstly
discussed to shed some more light on the estimation of a
field-scale WRF (section Drawbacks in Setting Up the Field-
Scale Water Retention Function) while critically evaluating
the drawback associated with the identification of the field
capacity and permanent wilting soil moisture values (section
Shortcomings Related to the Calculation of the Soil Moisture
Index). Then, we explore whether, and to what extent, non-
invasive datasets obtained from the stationary CRNPs can be
assumed as representative of areal soil moisture values whose
spatial variations can be explained, in turn, by easily retrievable
controlling factors, such as the soil textural classes and terrain
attributes (section Explaining the Spatial Variability of Soil
Moisture Data).

DATA COLLECTION AND ANALYSIS AT
THE STUDY SITES

Site Descriptions and Monitoring Devices
The Alento River Catchment (ARC) is located in the region
of Campania in southern Italy (Nasta et al., 2020a) (Figure 1)
and forms part of the TERENO (TERrestrial ENvironmental
Observatories) long-term ecosystem infrastructure network
(Bogena et al., 2012). For the purposes of the present study,
we selected two sub-catchments, namely MFC2 and GOR1,
located in the Upper Alento River Catchment (UARC), which
is a hilly upper part of ARC, with a drainage area of ∼102
km2 and delimited downstream by the Piano della Rocca
earthen dam (Nasta et al., 2017). The climate and environmental
characteristics of these two experimental sub-catchments are
described in Romano et al. (2018). MFC2 is located near the
village of Monteforte Cilento on the south-facing hillslope of
UARC, and has a drainage area of∼8.0 hectares (Figure 1a). This
site is representative of the cropland zone of UARC with a co-
existence of relatively sparse horticultural crops, olive, walnut,
and cherry trees. MFC2 exhibits a typical V-shaped topography
to form an ephemeral creek in the valley-bottom; hence it has
a classic signature from a hydrological viewpoint. GOR1 is the
other experimental sub-catchment located near the village of
Gorga, on the north-facing hillslope of UARC (Figure 1b). It has
a drainage area of ∼22.8 hectares and is representative of the
woodland zone of UARC, characterized by chestnut and oak trees
with brushwood made up of ferns and brambles growing during

summer. This forested site is on average steeper than MFC2
and has a bedrock mainly consisting of turbidite sandstones,
with medium permeability and mantled by a regolith zone of
sand-silt mixtures.

In 2016 and at each of the above-mentioned experimental
sites, a SoilNet wireless sensor network (Forschungszentrum
Jülich, Germany) was installed comprising twenty end-devices
connected to sensors positioned at the soil depths of 0.15 and
0.30m. At each soil depth, the apparent soil dielectric permittivity
(which is used to estimate θ through an empirical calibration
relation), soil temperature, and soil electrical conductivity are
measured by the GS3 capacitance sensors (METER Group,
Inc., Pullman, WA, USA), whereas the soil matric pressure
potential,ψ , is determined by theMPS-6 sensor (METERGroup,
Inc., Pullman, WA, USA). Note that the MPS-6 sensor can
measure ψ values only in the range from −90 hPa (i.e., a
matric suction head of about 0.92 × 100 m of H2O) to −106

hPa (i.e., a matric suction head of about 1.02 × 104 m of
H2O) and is, therefore, unable to provide measurements when
the soils are near saturation. The SoilNet data are transmitted
wirelessly to a local gateway and then via Global System for
Mobile Communications (GSM) modem to a central data server
in near-real time (Bogena et al., 2010). The SoilNet end-
devices were installed around a stationary cosmic-ray neutron
probe (CRS2000/B by Hydroinnova LLC, Albuquerque, USA) by
covering the experimental sub-catchments as much as possible
for future application and validation of hydrological models
(Figures 1a,b). The CRNP is a particle detector that measures
the neutron intensity in the well-mixed neutron pool above the
land surface, which is mainly determined by the amount of
hydrogen atoms in the soil. The resulting inverse relationship
between soil moisture and neutron intensity is described by the
equation proposed by Desilets et al. (2010), where an empirical
parameter requires site-specific calibration. The soil volume
probed by the CRNP (i.e., in terms of radial footprint and
penetration depth) is still a matter of debate, as new theories,
additional data, and further interpretations are constantly being
added (Köhli et al., 2015). According to Schrön et al. (2017), the
CRNP provides indirect measurements of soil moisture over a
circular footprint with an effective radius ranging from ∼150 to
210m (i.e., from about 7 to 14 hectares) depending on various
factors, e.g., soil moisture, atmospheric pressure, air humidity,
vegetation biomass, etc. The CRNP is hyper-sensitive to soil
moisture within the immediate vicinity and the sensitivity to
soil moisture decreases non-linearly with radial distance (Schrön
et al., 2017). The CRNP is most sensitive to soil moisture in the
upper soil horizon, and this sensitivity decreases exponentially
to a penetration depth of about 0.3–0.8m depending on the soil
moisture content. Therefore, we used the weighting procedure
proposed from Schrön et al. (2017) to calculate appropriate
mean values of our point-scale soil moisture measurements
with the GS3 capacitance sensors installed at soil depths of
0.15m and 0.30m for comparisons with our CRNP-based soil
moisture measurements.

One automatic weather station is located nearMFC2, at 400m
a.s.l., and another near GOR1, at 711m a.s.l. (Figure 1). Both
weather stations are equipped with the same types of sensors for
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FIGURE 1 | Geographical location and 5-m Digital Elevation Model (DEM) of the Upper Alento River Catchment (UARC) in Campania (southern Italy), with the two

experimental sites (MFC2 and GOR1) and corresponding weather stations displayed in the upper plots. The artificial water reservoir is delimited by the Piano della

Rocca earthen dam. The layouts of the 20 end-devices of the SoilNet wireless sensor network and Cosmic Ray Neutron Probe are displayed on the satellite image (on

the bottom plots) at MFC2 (plot a) GOR1 (plot b).

measuring the following variables at hourly time-steps: rainfall
(R), air temperature, air relative humidity, wind speed, and
direction, and net solar radiation using four-component net
radiation sensors (NR01 net radiometer, Hukseflux Thermal
Sensors, The Netherlands). According to World Meteorological
Organization (WMO) standards, wind speed and air temperature
are measured at a height of 3.0m, whereas solar radiation
is measured with the sensors positioned at a height of 2.0m
above the soil surface. Reference evapotranspiration (ET0) was
calculated by using the Penman-Monteith equation according to
the protocol proposed by Allen et al. (1998).

At each position of the SoilNet end-devices, disturbed soil
samples were collected at the two sensing depths for the
laboratory determination of the soil particle-size distribution
(PSD). Undisturbed soil cores (steel cylinder of 0.072m inner
diameter and 0.070m height) were also collected at the soil

depth of 0.15m (vertical sampling at a soil depth of 0.115–
0.185m) of each measuring position to determine oven-dry soil
bulk density (ρb).

Table 1 lists the descriptive statistics of United States
Department of Agriculture (USDA) soil particle classes (sand,
silt, and clay contents expressed in percentages) at the two
soil depths (0.15 and 0.30m) as well as the oven-dry soil bulk
density and soil porosity at a soil depth of 0.15m for the 20
SoilNet units in both MFC2 and GOR1 (see also Tables A1, A2

in the Appendix reporting measurements of soil physical
properties at each location). The individual triplet of sand-silt-
clay percent is inserted in the USDA soil textural triangle of
Figure 2, showing that the MFC2 cropland site is dominated
by the clay and silty-clay-loam textural classes, whereas the
predominant soil textural class of the GOR1 woodland site
is loamy.
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TABLE 1 | Descriptive statistics of sand, silt, and clay contents (in percent) at the

two sampled soil depths (0.15 and 0.30m) and oven-dry soil bulk density (ρb) with

corresponding soil porosity at the soil depth of 0.15m in the 20 SoilNet units for

both MFC2 and GOR1 sub-catchments.

Sand Silt Clay ρb Soil porosity

% % % g cm−3 m3 m−3

MFC2 z = 0.15m Mean 20.8 40.4 38.8 1.29 0.51

Std. Dev. 8.4 7.6 6.8 0.11 0.04

CV (%) 40.1 18.9 17.6 8.4 7.9

Min 10.5 22.1 23.5 1.00 0.46

Max 41.8 51.3 52.8 1.43 0.62

z = 0.30m Mean 22.3 40.7 37.1

Std. Dev. 9.7 8.5 8.7

CV (%) 43.4 21.0 23.6

Min 10.6 15.6 14.2

Max 50.6 51.2 51.5

GOR1 z = 0.15m Mean 40.7 37.8 21.5 1.18 0.55

Std. Dev. 7.2 6.4 3.5 0.30 0.11

CV (%) 17.7 16.8 16.1 25.3 25.3

Min 31.5 24.9 16.5 0.71 0.39

Max 56.1 49.8 27.8 1.63 0.73

z = 0.30m Mean 40.6 37.1 22.3

Std. Dev. 8.2 6.1 4.4

CV (%) 20.2 16.4 19.9

Min 28.4 25.5 14.3

Max 55.9 44.7 28.6

At MFC2 and GOR1, the mean and standard deviation values
of the textural particles are virtually the same for both sensing
soil depths. Therefore, the shallow soil layer of both sites can be
considered quite uniform in terms of soil properties. However,
the mean sand content at MFC2 is almost half that at GOR1,
thus offering a first glimpse of the diversity between the two
experimental sites. Mean oven-dry soil bulk density (ρb) values
measured at the soil depth of 0.15m are also virtually the same at
both MFC2 and GOR1, but the spatial variability of ρb is slightly
higher in the forested site. Mean soil porosity is computed from
the knowledge of ρb, assuming the soil particle density always
equal to 2.65 g cm−3.

Table 2 reports the descriptive statistics of the following
terrain attributes: elevation (ζ ), slope tangent, surface curvature
(κ), aspect (in degrees), and upslope contributing area (Ac). The
elevation of the forest site is almost twice that of the agricultural
site. The high steepness at GOR1 induces a wide range of
elevation (almost 100m) of the SoilNet end-device positions,
whilst MFC2 has gentle slopes and hence a very narrow elevation
range (about 20m). The two sites have similar curvature, but
different slope aspect as described above.

Calibration Procedure for Invasive and
Non-invasive Soil Moisture Sensors
A calibration step is necessary for ensuring good accuracy
and precision when estimating point-scale and field-scale soil
moisture values from the soil dielectric properties measured

by capacitance sensors (Bogena et al., 2017; Gasch et al.,
2017; Domínguez-Niño et al., 2019) and from neutron counts
measured by CRNP (Franz et al., 2013; Baroni et al., 2018),
respectively. Calibration of the CRNP requires simultaneous
measurements of soil moisture using the thermogravimetric
method and neutron intensity measured by the CRNP to estimate
the area-wide soil moisture, θCRNP. We followed the calibration
protocol suggested by Heidbüchel et al. (2016) and conducted
three field campaigns to cover both wet and dry climate
conditions to account for local climate seasonality. Soil sampling
was carried out using a stainless steel core sampler with a plastic
liner inside, with a length of 0.30m and an inner diameter of
0.05m. The soil samples were collected in 18 positions around
the CRNP (six locations along radial distances of 1.0, 10.0, and
110.0m). Each plastic liner was then cut into six pieces (each of
0.05m length) to measure the oven-dry soil bulk density and soil-
water content with the thermogravimetric method. Therefore, for
each experimental sub-catchment, a total of 108 undisturbed soil
cores were collected in each field campaign. The annex to this
paper provides the Excel file employed for the calculations of the
calibration procedure (Heidbüchel et al., 2016).

For calibrating the GS3 capacitance sensors, we carried out
five field campaigns to collect undisturbed soil cores with the
same core sampler used for calibrating the CRNP. The soil
samples were collected over the twenty positions of the SoilNet
end-devices. After soil sampling, we cut each core into six sub-
cores (each of 0.05m in length) to measure the soil moisture
value by the thermogravimetric method and also the particle-
size distribution. For calibration purposes, only the two sub-cores
relating to the soil depths of 0.15 and 0.30m were considered. To
convert the apparent soil dielectric permittivity, εa, into the GS3-
based soil moisture, θGS3, we used the relation proposed by the
METER company (Ferrarezi et al., 2020):

θGS3 = 5.89 · 10−6ε3a − 7.62 · 10−4ε2a + 3.67 · 10−2εa

−7.53 · 10−2, (1)

which was validated with the soil moisture values determined in
our laboratory with the thermogravimetric method (not shown
in this paper).

Two MPS-6 sensors were tested and calibrated in the
laboratory using a pressure plate apparatus in a way similar to
that described by Malazian et al. (2011). Finally, the empirical
equation was used to compensate for the temperature effect on
soil matric potential measured by theMPS-6 sensor (see Equation
(3) in Walthert and Schleppi, 2018).

For both sub-catchments, the monitoring program started in
spring 2016. Daily (indicated by the subscript d) values of rainfall,
Rd, and reference evapotranspiration, ET0,d, together with the soil
moisture content time series are shown in Figure 3 forMFC2 and
in Figure 4 for GOR1.

The presence of sporadic sensor malfunctioning of the GS3
sensors appears in these graphs due to the abrupt voltage
drops of some batteries. Unfortunately, the CRNP at GOR1
(from June 2018 to January 2019) and at MFC2 (from April
2019 to July 2019) experienced a fault because of the modem
interruption. The CRNP measurements, θCRNP, were affected
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FIGURE 2 | USDA soil textural classes (Sa = sand; Lo = loam; Si = silt; Cl = clay) of the 20 soil samples collected at each of the two soil depths (0.15 and 0.30m) at

MFC2 (red squares) and GOR1 (green circles).

TABLE 2 | Descriptive statistics of terrain attributes, namely elevation (ζ , above

mean sea level), tangent of slope [tg(slope)], tangential curvature (κ), aspect, and

upslope contributing area (Ac) for the 20 SoilNet units in both MFC2 and GOR1

sub-catchments.

Terrain attributes

ζ tg(slope) κ Aspect Ac

m - m−1 Degrees %

MFC2 Mean 427.9 0.16 −0.15 247.5 23.5

Std. Dev. 6.2 0.06 0.38 30.6 17.5

CV (%) 1.4 37.4 252.1 12.4 74.7

Min 417.5 0.05 −1.17 173.8 2.0

Max 436.4 0.35 0.32 287.3 79.0

GOR1 Mean 701.3 0.33 −0.15 49.6 85.8

Std. Dev. 23.0 0.16 0.56 68.8 164.4

CV (%) 3.3 47.8 363.8 138.8 191.7

Min 668.0 0.14 −1.39 14.4 1.0

Max 759.6 0.85 0.70 335.4 666.0

by episodic spikes during the rainy season probably because of
water ponding, low air temperature on the soil surface, or water
being retained by leaf interception. Therefore, such values were
removed from the data analysis.

Table 3 reports the descriptive statistics of SoilNet-based
(θGS3) and CRNP-based (θCRNP) soil moisture, rainfall (Ra),
cumulative reference potential evapotranspiration (ET0,a) depths
on an annual (indicated by subscript a) basis over the years
2017, 2018, and 2019. It is worth noting that the year 2017 was
characterized by a notable meteorological drought, with Ra being
about <41.5% in 2018 and <33.2% in 2019 for the cropland

area and <31.4% in 2018 and <8.5% in 2019 for the forested
area. During these 3 years, the mean annual rainfall in GOR1
was constantly and noticeably less than in MFC2, whereas the
mean annual potential evapotranspiration ET0,a in GOR1 was
only slightly less than in MFC2.

Data Analysis for Assessing Temporal
Variability of the Soil Moisture Index
The soil moisture index (SMIj) at time j provides a rough
quantification of soil wetness and was computed in this study
according to Hunt et al. (2009):

SMIj = −5+ 10

(

θj − θWP

)

(θFC − θWP)
(2)

where θ j is soil moisture content at time j, θFC is soil moisture
at the condition of “field capacity” in the soil profile, and θWP is
soil moisture when on average a plant wilts permanently, being
unable to recover its turgor. Note that the difference θFC-θWP

is commonly defined as the Plant Available Soil Water Holding
Capacity (Romano and Santini, 2002). SMI takes on negative and
positive values indicating the presence of soil conditions from
relatively dry to driest (−5 ≤ SMI < 0) or from relatively wet to
wettest (0≤ SMI≤+5). The values SMI=−5 correspond to the
soil moisture content at “permanent wilting,” whereas SMI=+5
is indicative of the soil moisture content at “field capacity” (Hunt
et al., 2009).

The permanent wilting point (θWP) is commonly computed
from the knowledge of the soil WRF, θ(ψ), as θ at the matric
pressure potential ψ = −15,300 hPa [i.e., 15 bars; Romano and
Santini (2002)], and this criterion is employed in the present
study. Instead, the condition of “field capacity” in a soil profile
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FIGURE 3 | Daily values of (a) rainfall, Rd (blue bars), reference evapotranspiration, ET0,d (red line), (b) SoilNet-based soil moisture contents (gray lines) at 0.15m soil

depth at the 20 locations and their unweighted spatial-mean (magenta line) and CRNP-based soil moisture (black line) and (c) SoilNet-based soil moisture contents

(gray lines) at 0.30m soil depth at the 20 locations and their unweighted spatial-mean (magenta line) and CRNP-based soil moisture (black line) at MFC2.

FIGURE 4 | Daily values of (a) rainfall, Rd (blue bars), reference potential evapotranspiration, ET0,d (red line), (b) SoilNet-based soil moisture contents (gray lines) at

0.15m soil depth at the 20 locations and their unweighted spatial-mean (blue line) and CRNP-based soil moisture (black line) and (c) SoilNet-based soil moisture

contents (gray lines) at 0.30m soil depth at the 20 locations and their unweighted spatial-mean (blue line) and CRNP-based soil moisture (black line) at GOR1 site.

does not have a clear and shared definition and is still subjected
to slightly different meanings. Actually, the soil moisture content
at “field capacity,” θFC, is a process-dependent parameter that
can be defined as the average soil moisture measured in the

entire soil profile when the water flux at its lower boundary
becomes virtually nil during a drainage process starting with
the initial condition of full saturation and with evaporation
prevented at the upper boundary of soil surface (Romano and
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TABLE 3 | Rainfall (Ra) and reference potential evapotranspiration (ET0,a) depths

on an annual basis with corresponding spatio-temporal-mean of SoilNet-based

soil moisture (θGS3) at soil depths of 0.15 and 0.30m and time-averaged

CRNP-based soil moisture (θCRNP) at MFC2 and GOR1 in 2017, 2018, and 2019.

Site Soil depth Year Units 2017 2018 2019

MFC2 Ra mm 865.8 1481.6 1296.7

ET0,a mm 710.9 596.7 579.3

z = 0.15m θGS3 m3 m−3 0.313 0.344 0.345

z = 0.30m θGS3 m3 m−3 0.338 0.380 0.367

θCRNP m3 m−3 0.236 0.316 0.286

GOR1 Ra mm 599.6 874.8 655.8

ET0,a mm 686.5 466.2 549.7

z = 0.15m θGS3 m3 m−3 0.305 0.340 0.322

z = 0.30m θGS3 m3 m−3 0.323 0.350 0.331

θCRNP m3 m−3 0.245 0.335 0.244

Santini, 2002; Nasta and Romano, 2016). This parameter is
considered a critical threshold of soil water-holding capacity
and commonly employed in bucketing-type models to control
hydrological processes, such as overland flow and drainage below
the root zone of a uniform soil profile (Romano et al., 2011). The
value of θFC should be obtained using a specifically designed in-
situ drainage experiment, but can be conveniently retrieved also
through numerical simulations, especially in the case of layered
soil profiles that are the rule rather than an exception in the real
world (Nasta and Romano, 2016). Under simplified assumptions
and in the case of a uniform soil profile, the value of θFC can
instead be roughly estimated from the knowledge of the soilWRF
using a static criterion that assumes, on average, that θFC is equal
to the soil-water content at the matric pressure potential of−330
hPa. Allowing for the effect of soil texture on the “field capacity”
value, Romano and Santini (2002) suggested setting a soil matric
pressure potential of ∼-100 hPa for coarse soils and −500 hPa
for fine soils. The matric pressure value of −330 hPa should be
mostly used in the cases of medium-textured soils (Romano et al.,
2011).

Given the simplified picture of soil condition offered by the
SMI, in this study we estimated the θFC value through the
analytical equation proposed by Assouline and Or (2014) that
computes the soil matric potential at “field capacity” (ψFC)
as follows:

ψFC =
1

αvG

(

nvG − 1

nvG

)(
1− 2 nvG

nvG
)

, (3)

and hence determines the soil moisture content at field capacity
as follows:

θFC = θr + (θs − θr)
[

1+ (αvG |ψFC|)nvG
]

(

1−nvG
nvG

)

, (4)

where αvG (hPa−1) and nvG (–) are the two shape parameters
featuring in van Genuchten (1980) analytical soil-water retention
relationship θ(ψ):

θ(ψ) = θr +
θs − θr

(1+ |αvGψ |nvG)mvG
, (5)

with the condition mvG = 1–1/nvG. We use the acronym “vG”
as a subscript to refer to the above parameters. The θ s (m3

m−3) and θ r (m3 m−3) parameters are the saturated and residual
soil water contents, respectively. While θs has a clear physical
meaning and is measured with laboratory or field tests, θ r
is often set at zero or assumed as an additional unknown
parameter to be estimated by the fitting procedure together
with the other two unknown parameters αvG and nvG. By
substituting Equation (3) into Equation (4), the knowledge of
θs, θr , and nvG, allows to determine θFC through the following
closed-form expression:

θFC = θr + (θs − θr)

{

1 +
[

nvG − 1

nvG

](1 − 2nvG)
}

(

1−nvG
nvG

)

. (6)

To test whether the SMI distributions are unimodal or
bimodal, in this study we refer to the empirical method
that evaluates a bimodality coefficient, termed BC (Pfister
et al., 2013), which ranges between 0 and 1 and is computed
as follows:

BC =
m2

3 + 1

m4 + 3
[

(n− 1)2 / (n− 2) (n− 3)
] , (7)

where n is the sample size, m3 is the skewness and
m4 is kurtosis of the distribution. To avoid sample
bias, the skewness and kurtosis values are calculated
as follows:

m3 =
√
n (n− 1)

n− 2



















1/n
∑n

i = 1 (xi − x)3

[

√

1/n
∑n

i = 1 (xi − x)2
]3



















, (8)

m4 =
n− 1

(n− 2) (n− 3)

{

(n+ 1)
1/n

∑n
i = 1 (xi − x)4

[

1/n
∑n

i = 1 (xi − x)2
]2

−3 (n− 1)} , (9)

where x is the arithmetic mean of the set of data. A bimodal
distribution is characterized by high skewness, low kurtosis,
or both. Specifically, if BC is >0.555 (BC > 0.555), then the
hypothesis that the data follow a bimodal distribution cannot be
rejected (Kang and Noh, 2019).

Data Analysis for Assessing Spatial
Variability of Soil Moisture Data
The partial least-squares regression (PLSR) model is used to
reveal the factor explaining the spatial variance of daily soil
moisture data. As discussed in (Romano and Chirico, 2004)
and Nasta et al. (2018b), most soil moisture variations are
cross-correlated with soil physical properties, such as the
percentages of sand, silt, and clay contents (see Table 1 and
Tables A1, A2), as well as terrain attributes, such as elevation
above mean sea level, slope aspect, slope gradient, tangential
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curvature, and upslope contributing area (see Table 2). The
PLSR model generates new predictor variables (components) as
combinations of the original predictors and finds combinations
of the predictors that have a large covariance with the soil
moisture data. The predictive ability of PLSR is expressed in
terms of the coefficient of determination and root mean squared
error (RMSE) which, respectively, evaluate the scatter of the
data points around the fitted regression curve and the bias
between observed and modeled soil moisture values. PLSR also
provides the percent of variance explained by the components,
distinguishing between soil textural characteristics and
topographic attributes.

RESULTS

Assessing the CRNP Vertical Footprint
In this study, we investigated the vertical footprint of the
CRNP in the two experimental areas (MFC2 and GOR1).
Among the variety of weighting procedures provided in the
literature, we opted to use the equal (unweighted) spatial-
mean and a reliable physically-based weighted spatial-mean
of point-scale soil moisture measurements (Schrön et al.,
2017). The first step is to compare the CRNP-based soil
moisture with the unweighted soil moisture spatial-mean, as
depicted in Figures 3, 4. We also computed the physically-
based weighted spatial-mean of the SoilNet-based soil moisture
data as recommended by Schrön et al. (2017) by using the
MATLAB script provided by these authors. The comparisons
between the CRNP-based soil moisture and all the unweighted or
weighted spatial-mean SoilNet-based soil moisture are depicted
in the scatter plots of Figure 5 for both the MFC2 and
GOR1 sites. Although RMSE takes on very similar values for
the four cases considered, the Schrön et al. (2017) weighted
procedure seems to provide a slightly better correlation than
the unweighted one especially at the higher soil moisture
contents, as evident from the fact that the scatter cloud
tends to be closer to the identity line as θ increases. This
situation is more pronounced for MFC2 than GOR1. It is
also worth noting that the scatter cloud increasingly diverges
from the identity line when soil moisture values decrease.
Overall, the impact of employing a weighting procedure for
our case studies seems to provide only a scant improvement.
This situation can be explained if one considers that, allowing
for the limited number of available devices, the positioning
of the sensor nodes was primarily designed to detect the
spatial patterns of the soil hydrological variables as well as
possible and not for comparison purposes between the two
sensing systems (i.e., a relatively low number of SoilNet end-
devices is located in the direct vicinity of the CRNP). That
said, in the following we assumed that both vertical and
radial weights also apply to obtain the averaged soil matric
potential values.

Because the soil moisture values observed by the two sensing
systems show different means and ranges of variation, the
comparison among the time series is more robust when these
data are standardized using the Z-scores, which can take on
positive or negative values (for example, positive values indicate

that the data are above the arithmetic mean). As evident
from a perusal of Figure 6, both unweighted and weighted
time series of θGS3 overlap almost perfectly over the CRNP-
based soil moisture time series. Nevertheless, the CRNP data
show significantly higher temporal variability, thus indicating a
stronger response to climate forcing. This feature reflects the
higher sensitivity of the CRNP to near-surface soil moisture
due to the decreasing sensitivity with soil depth (Schrön et al.,
2017).

Field-Scale Soil Water Retention
Characteristics
The simultaneous availability of soil moisture, θGS3,j, and matric
pressure head, ψj, values, at the same time, j, and soil depth,
z, from the wireless sensor networks, allows us to identify the
SoilNet-based soil water retention functions (WRFs) at the two
sites. The WRFs of Figures 7A,B, shown for the two sensing
depths of 0.15 and 0.30m, were determined by coupling the
daily unweighted values of the spatial-mean of θGS3,jand log10-
transformed ψj. Because the MPS-6 sensor is unable to measure
matric pressures>-90 hPa, data pairs |ψj|-θGS3,j are not available
in the near-saturated region of the WRF. Consequently, we
set the saturated soil water content, θ s, as 90% of the spatial-
mean soil porosity obtained from the direct measurements of
ρb (see Table 1). Figures 7A,B also show van Genuchten’s water
retention relations whose unknown parameters αvG and nvG
were obtained by non-linear regression, while setting θr at
zero. All parameters, including the prescribed (θs), optimized
(αvG, nvG), and those derived from the knowledge of the
WRFs (θFC, θWP) are reported for each site in Table 4 with
the corresponding RMSE values. Overall, the two SoilNet-based
WRFs belonging to the MFC2 and GOR1 sites (solid black line
for GOR1 and dashed black line for MFC2) are characterized
by different shapes, with the solid curve of GOR1 showing a
shape typical for medium- or coarser-textured soils, with a quite
rapid decrease in soil moisture contents in the wet region of
the diagram. The dashed curve for MFC2 desaturates with a
smooth decay which certainly reflects the typical behavior of
finer-textured soils.

According to our method and as depicted in Figure 7C,
an “effective” (field-scale) soil WRF over the CRNP footprint
can be suitably obtained by coupling, for the same time
j, the areal-based soil moisture (θCRNP,j) contents with the
weighted spatial-mean matric pressure potential (ψj) values.
The weights applied to ψj-values were obtained through
the weighting procedure recommended by Schrön et al.
(2017).

In all the soil water retention curves of Figure 7, the black
circles identify the soil moisture contents at “field capacity,” as
computed by Equation (6), and the black squares identify the
soil moisture contents at “permanent wilting,” corresponding
to |ψ | = 1.50 × 104 hPa. The picture provided by the
θCRNP(|ψ |) retention curves of Figure 7C allows us to frame
in a new perspective the potential of using the areal soil
moisture contents offered by a CRNP, and also gives us some
preliminary indications on possible drawbacks related to a scale
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FIGURE 5 | Relation between CRNP-based soil moisture and unweighted spatial-mean of SoilNet-based soil moisture at (A) MFC2; (B) GOR1; relation between

CRNP-based soil moisture and weighted spatial-mean of SoilNet-based soil moisture at (C) MFC2; (D) GOR1. Dashed black line depicts the 1:1 identity line. RMSE

values are reported in each subplot.

FIGURE 6 | Daily values of Z-scores of unweighted spatial-mean SoilNet-based soil moisture contents, weighted spatial-mean and CRNP-based soil moisture (black

line) in (a) MFC2; and (b) GOR1.

mismatch between the areal θ and the point-scale ψ data.
For both MFC2 and GOR1 sites, the observed scatter of the
retention points (see RMSE values in Table 4) is likely due

to the different spatial scales associated with the CRNP-based
soil moisture contents and the point-measured matric potential
pressure values.
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FIGURE 7 | Soil-water retention functions obtained by relating daily values of (A) SoilNet data pairs at z = 0.15m; (B) SoilNet data pairs at z = 0.30m; (C)

CRNP-based soil moisture (θCRNP,j) and spatial-mean SoilNet-based soil matric potential (absolute value |ψ j |) at MFC2 (red circles) and GOR1 (green circles). Dashed

black (MFC2) and solid black (GOR1) lines represent the soil-water retention curves fitted using van Genuchten’s parametric relation. Black circles and black squares

denote the θFC and θWP values at the conditions of “field capacity” and “permanent wilting,” respectively.

TABLE 4 | Parameters feauturing in the vG-WRF at MFC2 and GOR1 referring to

point-scale SoilNet based WRF at soil depths of 0.15 and 0.30m and

field-scale WRF.

MFC2 GOR1

z = 0.15 m z = 0.30 m z = 0.15 m z = 0.30 m

Point-scale Field-

scale

Point-scale Field-

scale

θs m3 m−3 0.46 0.46 0.46 0.50 0.50 0.50

αvG cm−1 0.108 0.024 0.135 0.149 0.228 0.374

nvG - 1.08 1.09 1.12 1.13 1.12 1.14

θFC m3 m−3 0.364 0.384 0.338 0.366 0.380 0.356

θWP m3 m−3 0.249 0.262 0.180 0.192 0.215 0.147

RMSE m3 m−3 0.0196 0.0172 0.0365 0.0166 0.0142 0.0288

Temporal Variability of the Soil Moisture
Index
The soil moisture index (SMI) is a transformation of soil
moisture data and was employed in this study to remove (i)
the offset between CRNP-based and SoilNet-based soil moisture
observed in Figures 3–5, and (ii) the impact of time-invariant
environmental controls, such as the soil textural characteristics
and topographical features, on the soil moisture temporal
variability (Mittelbach and Seneviratne, 2012). The SMI is
computed by using the soil moisture contents at “field capacity”
(θFC) and “permanent wilting” (θWP) as determined in section

Field-Scale Soil Water Retention Characteristics and reported in
Table 4 (see also the plots in Figure 7) following the procedure
described in section Data Analysis for Assessing Temporal
Variability of the Soil Moisture Index.

Based on the results shown by Romano et al. (2018)
regarding the soil moisture distributions, we further processed
our datasets by analyzing the histograms of daily SMI
values (SMId) that are depicted in Figure 8. The individual
graphs of this figure enable us to suitably compare the
hydrological responses of the cropland (red bars) and woodland
(green bars) areas. The SMId values mostly fluctuate around
the zero value with the occurrence of wetter-than-normal
conditions induced by rainfall surplus and drier-than-normal
conditions determined by rainfall deficits. Note that the period
from March to September 2017 was characterized by an
exceptionally long dry spell. For almost all months over the
investigated 4-year period, the rainfall at MFC2 exceeded that
at GOR1, which is reflected in the amount of water present in
the soil.

The graphs of Figure 8 show that the histograms of SMId
computed from the θGS3 data, at the two soil depths of 0.15
and 0.30m, are characterized by an evident bimodal shape and
this visual evidence is also quantified by the bimodal coefficient
BC, which always takes on values >0.555. In contrast, the
histograms of SMId obtained from the θCRNP data follow a
more Gaussian-like unimodal distribution, as indicated by BC
values lower than 0.555. A perusal of these plots provides a
useful indication of the soil hydrological behavior of these two
experimental sites. Inspection of Figures 3, 4 highlights that
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FIGURE 8 | Frequency distributions of daily values of SMI (SMId ) calculated using SoilNet-based soil moisture spatial-mean at z = 0.15m at (A) MFC2 and (B) GOR1,

and z = 0.30m at (C) MFC2 and (D) GOR1, and CRNP-based soil moisture at (E) MFC2 and (F) GOR1. Each subplot reports the bimodality coefficient (BC).

the soil moisture time series measured by the GS3 sensors
show the presence of persistent wet and dry conditions that
are interrupted by sharp wetting pulses and smooth soil
desaturation. The two observed long-term plateaus induce the
bimodal shape of the corresponding distribution of SoilNet-
based SMId values that reflect the typical rainfall seasonality
of the Mediterranean climate (Vilasa et al., 2017). By contrast,
CRNP-based soil moisture data show a constant decrease during
desaturation in the growing season and sharp wetting-drying
pulses during the rainy season. This temporal variability is
typical of the near-surface soil moisture dynamics and is
reflected in the unimodal frequency distribution of CRNP-
based SMId values in Figure 8. Nevertheless, a further step
is to verify whether these patterns hold within a year-by-
year analysis given the remarkable variability of annual rainfall
sums reported in Table 3. Figures 9, 10 report the frequency
distributions of SMId values calculated by using SoilNet-based
soil moisture at z = 0.15m and CRNP-based soil moisture
for each year at MFC2 and GOR1, respectively. Interestingly,
CRNP-based soil moisture is able to capture bimodality only
in 2017 (characterized by a long drought) in MFC2 (BC =
0.57). Extremely wet conditions recorded in 2018 induce a
unimodal normal distribution in CRNP-based SMId values
in MFC2. Unfortunately, a similar situation could not be
explored in GOR1 due to a large amount of missing data at
this site.

Spatial Variability of Soil Moisture
This section illustrates the spatial variability of SoilNet-based soil
moisture explained by easily-available environmental variables
such as soil textural classes and terrain features. Figure 11

illustrates the CRNP-based SMId values against the spatial-
standard deviation of θGS3,j values measured at the soil depth
of 0.15m in both MFC2 and GOR1. The spatial variability of
soil moisture data is related to SMId values with a somewhat
concave downward shape that is more pronounced for the
forested site. This shape is similar to that reported by, for
example, Teuling and Troch (2005), Famiglietti et al. (2008),
and Rosenbaum et al. (2012), although different patterns of
this relationship have been reported elsewhere (Mittelbach and
Seneviratne, 2012). Because of the larger spatial variability of
soil properties in the cropland site, one immediately notices
the larger scatter of the points for MFC2 (Figures 11A,B) with
respect to GOR1 (Figures 11C,D) in the central range of the
catchment’s spatially averaged soil moisture measured by the
CRNP. This may explain the large scatter observed in the field-
scale WRF belonging to MFC2 (Figure 7C). Further insights
are gained by evaluating the role exerted by easily-retrievable
local and non-local factors, comprising the five topographical
attributes (elevation, aspect, slope, tangential curvature, upslope
contributing area) and the three soil textural classes (percentages
of sand, silt, and clay content), to help describe the spatial
organization of the observed soil moisture datasets. However,

Frontiers in Water | www.frontiersin.org 12 September 2020 | Volume 2 | Article 26



Nasta et al. Soil Moisture Space-Time Variability

FIGURE 9 | Frequency distributions of daily values of SMI (SMId) calculated using SoilNet-based soil moisture at z = 0.15m (red bars) and CRNP-based soil moisture

(magenta bars) at MFC2 in 2017, 2018, and 2019. Each subplot reports the bimodality coefficient (BC).

apart from a few general comments, we caution the reader that
the impact of vegetation was neglected in this study due to a lack
of direct robust measurements.

The variability explained by the soil terrain attributes (top
panels, Figure 11A for MFC2 and Figure 11C for GOR1) and
textural characteristics (bottom panels, Figure 11B for MFC2
and Figure 11D for GOR1) is quantified by using the PLSR
method (described in section Data Analysis for Assessing Spatial
Variability of Soil Moisture Data) and represented by the
color bar on the right side of the plots in Figure 11. It is
worth noting that, on average, the terrain attributes explain
almost 50% of soil moisture spatial variability in the case
of the cropland site (i.e., MFC2), under both wet and dry
conditions. In the forested site (i.e., GOR1), the considered
terrain attributes explain on average about 40% of soil moisture
spatial variability. Nonetheless, this percentage of explained
variability increases significantly under wet conditions (bluish
colors in Figure 11C) and decreases considerably under dry
conditions (reddish colors in Figure 11C). Figures 11B,D show
that soil texture has a scant ability to explain the spatial
organization of soil moisture data in both sites at the soil depth
of 0.15 m.

The five terrain attributes (elevation, aspect, slope, tangential
curvature, upslope contributing area) explain most near-surface
soil moisture variability in both sites. Interesting aspects emerge
if we iteratively repeat the PLSR exercise by removing one terrain
attribute at a time: aspect-induced variability of soil moisture

plays a major role in both experimental sites; the second-
ranked topographic attribute is elevation for MFC2, and upslope
contributing area for GOR1.

DISCUSSION

Drawbacks in Setting Up the Field-Scale
Water Retention Function
In this study, we proposed to construct an “effective” (field-
scale) soil WRF by coupling the areal-based soil moisture
(θCRNP,j) contents with the weighted spatial-mean matric
pressure potential (ψj) values with weights obtained through
the weighting procedure recommended by Schrön et al. (2017).
On the one hand, a persistent offset occurs between the spatial-
mean θGS3 and θCRNP (see Figures 3, 4) mostly to be attributed
to calibration effects; on the other, we observed a relatively
large scatter among the water retention data pairs of Figure 7
which may be attributed to several drawbacks. Enhancing the
calibration procedure for the CRNPs is certainly to be considered
a priority and more field campaigns would probably be required
under extremely dry or wet conditions. However, the onset of
a sort of scale mismatch represents another important issue
which, however, can be tempered by installing some MPS-6
sensors at depths much closer to the soil surface and over more
locations, especially near the CRNP (within a radial distance
of 5m). The biomass of dense understory vegetation during
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FIGURE 10 | Frequency distributions of daily values of SMI (SMId ) calculated with SoilNet-based soil moisture at z = 0.15m (green bars) and CRNP-based soil

moisture (cyan bars) at MFC2 in 2017, 2018, and 2019. Each subplot reports the bimodality coefficient (BC).

FIGURE 11 | Scatter plots of CRNP-based SMI-values against spatial standard-deviation of SoilNet-based soil moisture, Std(θGS3,j), at 0.15m soil depth and time j for

the two experimental sites. The various shades of the colored circles indicate the amount (in percent) of spatial variance explained: (A) by terrain attributes at MFC2;

(B) by soil texture at MFC2; (C) by terrain attributes at GOR1; (D) by soil texture at GOR1.
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the summer season may have influenced the neutron counts
determined by the CRNP (Baatz et al., 2015; Jakobi et al., 2018),
and the corresponding impact on soil moisture estimates needs
more attention in the near future.

To some extent, we used the SMI values to remove the
effect of sensor calibration on both the offset and impact
of environmental conditions between the two experimental
sites. An analysis of the time series of SMId values highlights
the different behavior between the CRNP-based and SoilNet-
based soil moisture contents. The SMI from the sensor
networks at soil depths of 0.15 and 0.30m was able to
reflect the impact of Mediterranean rainfall seasonality (Nasta
et al., 2020b), although the possibility of having additional
capacitance sensors installed at a shallower soil depth would
have helped us to better compare our two sensing systems
(Franz et al., 2012).

Shortcomings Related to the Calculation of
the Soil Moisture Index
In this study, we assumed that the soil moisture index (SMI)
can give a useful picture of the soil hydrological behavior of
zones with quite different physiographic characteristics, such as
our MFC2 and GOR1 experimental sites. Yet the calculation
of SMI values requires knowledge of soil moisture contents at
field capacity and permanent wilting which, in turn, should be at
least retrieved from the soil WRF. If an analytical θ(ψ) relation
cannot be obtained from direct measurements, one can resort to
a pedotransfer function (PTF) (van Looy et al., 2017) and then
compute the values of θFC and θWP for example by following
the static approaches proposed by Assouline and Or (2014) or
Reynolds (2018). Alternatively, Guber et al. (2006) reported a
list of PTFs to directly estimate the soil moisture contents at the
prescribed matric suction pressure |ψ | of 330 hPa (field capacity)
and 15,300 hPa (wilting point).

Another question concerns the lack of direct measurement of
the soil moisture content at full saturation, θ s. We assumed θ s as
90% of the spatial-mean soil porosity, which was calculated from
the spatial-mean soil bulk density as suggested by Pollacco et al.
(2013). To better support non-invasive measurement methods,
such as cosmic-ray neutron sensing, we will shortly carry out field
campaigns to measure θ s at both experimental sub-catchments.

The observed area-wide θCRNP values are on average lower
than θGS3 values (see Table 3). The sensitivity of the CRNP
exponentially decreases with depth, with most information on
θCRNP being concentrated in the first 0.05m of soil depth,
which is not covered by the SoilNet sensors. The differences
between SoilNet-based and CRNP-based soil moisture data can
definitely affect the determination of the WRF, hence yielding
different θFC and θWP values and consequently different SMI-
values (Table 4). In MFC2 the SoilNet-based WRFs lead to field
capacity and wilting point values other than those obtained
by the CRNP-based WRF (θFC = 0.338 m3 m−3 and θWP =
0.180 m3 m−3). Similarly, at GOR1 the SoilNet-based WRFs lead
to field capacity and wilting point values different from those
obtained by the CRNP-based WRF (θFC = 0.356 m3 m−3 and
θWP = 0.147 m3 m−3).

SMI was computed over a period of time (from 2016 to 2019)
whichmay be considered as short for drawing sound conclusions.
Therefore, this paper presented only some preliminary results
of an ongoing long-term monitoring program underway in the
Upper Alento River Catchment. As more data become available,
a subsequent paper will explore the relationships between
long-term time-series of SMI and climate-based standardized
indices, such as the Standardized Precipitation Index (SPI)
or Standardized Precipitation-Evapotranspiration Index (SPEI),
obtaining robust correlations between meteorological and
agricultural/hydrological droughts (Mozny et al., 2012;Martínez-
Fernández et al., 2015; Barker et al., 2016). Capturing such
relationships is of paramount importance in the decision-making
process applied to the management of water resources.

Explaining the Spatial Variability of Soil
Moisture Data
Assessing the spatial variability of soil moisture, even over
relatively small areas, is challenging and commonly obtained
using a large number of sensors sparsely deployed in the
uppermost soil layer of a study area and along the soil profiles.
This task is prohibitively expensive and laborious, and therefore
motivated the present investigation, i.e., to explore whether, and
to what extent, non-invasive soil moisture datasets obtained from
stationary CRNPs can be assumed as representative of areal
values whose spatial variations can be explained, in turn, by easily
retrievable controlling factors, such as the soil textural classes
and terrain attributes. The practical implication of this outcome
concerns, for example, either physically-based or statistically-
based downscaling methods enabling high-resolution spatial
maps of near-surface soil moisture (at meter grid-size) to be
estimated from the cosmic-ray areal measurements (i.e., at
hectometer grid-size) (Qu et al., 2015; Nasta et al., 2018a).

An increase in spatial variability of soil moisture as its
spatial-mean increases was reported in several studies (Martínez-
Fernández and Ceballos, 2003;Molina et al., 2014), but increasing
spatial variability with decreasing spatial-mean soil moisture was
observed by others (e.g., Famiglietti et al., 2008). Most of the
investigations reported in the literature have detected a concave
downward shape for the relationship that links the spatial soil
moisture variability and the spatial-mean soil moisture (e.g.,
Rosenbaum et al., 2012; Fatichi et al., 2015) as we also found at
GOR1 for the soil depth of 0.15 m.

By exploiting the results from the PLSR method, Figure 11
shows the spatial variance of soil moisture explained by terrain
attributes and soil texture. In MFC2, almost 50% of the observed
spatial variance of topsoil soil moisture (i.e., that measured at the
soil depth of 0.15m) is explained by non-local controls (terrain
attributes); soil texture is instead able to explain only 5% of the
total variance.

In the forested site (GOR1), the spatial variance of soil
moisture data explained by easily-available soil and terrain
factors increases when moving from dry to wet conditions.
The maximum amount explained reaches 92% in the wet
season. Beaudette et al. (2013) reported that terrain attributes
were able to consistently account for 30–70% of the total
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variance of soil moisture at 0.10m soil depth, and 10–40%
at the soil depths of 0.30 and 0.50m. Wilson et al. (2004)
were able to explain a small component (<30%) of the soil
moisture spatial variability in six experimental sites using
terrain attributes.

CONCLUDING REMARKS

This study explores the feasibility of assessing the soil
hydrological behavior of two experimental fields by integrating
the area-average soil moisture monitored by CRNP and the
spatial-mean of the point-scale soil moisture and soil matric
potential values measured by a network of multiple low-cost
sensors (SoilNet). An in-depth understanding of the hydrological
behavior of a field helps improve the application of suitable
hydrological models to run numerical simulations. Nonetheless,
the measurement of field-scale near-surface soil moisture is
sometimes not sufficient to calibrate and validate hydrological
models which, in turn, require the knowledge of the soil water
retention function. In the present study, we have proposed
a technique for obtaining a field-scale soil water retention
function as an alternative to laboratory-based methods that are
time-consuming, expensive, and rather unfeasible for large-scale
applications. However, some drawbacks need to be considered
and better understood at least before a proximal sensor for
monitoring soil matric potential comes out in the future. The
scale mismatch affecting the scatter in the field-scale WRF can
be reduced only at the cost of installing a large number of
MPS-6 sensors, especially in the near-surface positions. Yet this
would increase costs and might become unpractical. Improving
calibration procedures can help reduce the offset between CRNP-
based soil moisture and weighted spatial-mean SoilNet-based soil
moisture as demonstrated by the strong agreement of their Z-
scores. The CRNP is not able to capture the bimodal distribution
reflected by the SoilNet-based soil moisture data, except in a very
dry year like 2017. Last but not least, the large scatter observed
in the field-scale WRF in MFC2 can also be induced by the
large spatial variability of soil moisture which, in turn, is largely

explained by terrain attributes. If the CRNP-based soil moisture

is assumed to be representative of areal values, the practical
implication of this outcome opens room for using topography-
based downscaling methods enabling high-resolution spatial
maps of near-surface soil moisture.
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